Technology Challenges for SRF Guns as ERL Sources in View of Rossendorf work

Dietmar Janssen, Hartmut Buettig, Pavel Evtushenko, Ulf Lehnert, Peter Michel, Karsten Moeller, Petr Murcek, Christof Schneider, Rico Schurig, Friedrich Staufenbiel, Jochen Teichert, Rong Xiang, (FZR, Dresden), Juergen Stephan (IKS Dresden), Wolf-Dietrich Lehmann (IfE Dresden), Thorsten Kamps, Dirk Lipka (BESSY GmbH, Berlin), Vladimir Volkov (BINP SB RAS, Novosibirsk), Ingo Will (MBI, Berlin)
Basic Design

Normal-conducting cathode inside SC cavity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>Niobium 3+½ cell (TESLA Geometry)</td>
</tr>
<tr>
<td></td>
<td>Choke filter</td>
</tr>
<tr>
<td>Operation</td>
<td>T = 1.8 K</td>
</tr>
<tr>
<td>Frequency</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td>HF power</td>
<td>10 kW</td>
</tr>
<tr>
<td>Electron energy</td>
<td>10 MeV</td>
</tr>
<tr>
<td>Average current</td>
<td>1 mA</td>
</tr>
<tr>
<td>Cathode</td>
<td>Cs₂Te</td>
</tr>
<tr>
<td></td>
<td>thermally insulated, LN₂ cooled</td>
</tr>
<tr>
<td>Laser</td>
<td>262 nm, 1W</td>
</tr>
<tr>
<td>Pulse frequency</td>
<td>13 MHz & < 1 MHz</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>77 pC & 1 nC</td>
</tr>
</tbody>
</table>
Main Components of the SRF Photogun in Rossendorf

- Tuning system
- RF input coupler
- 3½-cell cavity
- Test benches for:
 - Critical component
- SRF-Gun
- Cryostat:
 - Cathode insert & cooling
 - He-vessel & port
 - LN₂ cooling & port
 - Magnetic shield, vacuum diagnostics
- LHe transfer line & distribution box
- Control systems:
 - Synchronisation
 - He-pressure & level
 - Tuning, rf system, laser
 - Beam line devices
 - PSS, MPS, Vacuum
- Power rf system
- Low level rf system
- Diagnostic beam line:
 - View ports, current, beam shape
 - Energy and energy width
 - Bunch length, emittance
- Driver Laser
- Laser beam line
- Photocathode transfer & storage
- Photocathode preparation equipment
- ELBE connection beam line

Radiation Source ELBE
Dietmar Janssen
16.03.2005
3
Design consideration of the gun cell

L1 is mainly determined by technological conditions (pressure, multipacting, etching)

The optimal L2 value follows from the beam properties

One dimensional model calculation:

\[E(\Phi) \rightarrow \text{max}, \quad E_{\text{cath}} \sin(\Phi) \rightarrow \text{max} \]

\[L_1 = \frac{\lambda}{4} \cdot \alpha_0 \cdot A_0 \]

L = L1 + L2 width of the gun cell

L1 = \alpha_0 \cdot A_0 \cdot \lambda / 2\pi
Result of numerical optimization

Numerical minimization of the beam emittance by variation of the gun cell shape with the condition, that $B_{\text{max}} < 115 \text{mT}$ and $E_{\text{max}} < 52 \text{MV/m}$ when $E_{\text{acc}} = 25 \text{MV/m}$

1st cell

Shortened TESLA cup

TESLA cups

Choke

Cathode holder housing

Input coupler and pick up ports

Obtained result: [mm]
$L_1 + L_2 = \lambda/4 - 20 = 37.7$
$a_1 = 9$, $b_1 = 16$,
$R_1 = 102.5$, $r_1 = 11.4$,
RRR40 and RRR300 cavity of the SRF gun
Cavity Design Parameter

RF focusing in SC gun cavities

<table>
<thead>
<tr>
<th>1. 3 GHz, 10 kW</th>
<th>optimized half cell & 3 TESLA cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{z,\text{max}} = 50 \text{ MV/m (T cells)}$</td>
<td>$= 33 \text{ MV/m (1/2 cell)}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>77 pC</th>
<th>1 nC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{av} = 1 \text{ mA}$</td>
<td>$E = 9.5 \text{ MeV}$</td>
</tr>
</tbody>
</table>

| 0.5 mm mrad | 2.5 mm mrad |

Fields are normalized to the accelerating gradient in the TESLA cells of 25 MV/m.
Magnetic RF field inside the cavity

\begin{align*}
E_{TM} \text{ field pattern (1300 MHz)} & \quad B_{TE} \text{ field pattern (3802 MHz)} \\
\end{align*}
Design parameter including the magnetic mode

![Graph showing beam size and transverse emittance](image)

<table>
<thead>
<tr>
<th>Beam parameter</th>
<th>Field parameter</th>
<th>Laser parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_z [\text{mm mrad}]$</td>
<td>$B_{\text{TMSurf}} [\text{mT}]$</td>
<td>115</td>
</tr>
<tr>
<td>$\sigma_x [\text{mm}]$</td>
<td>$B_{\text{TEsurf}} [\text{mT}]$</td>
<td>136</td>
</tr>
<tr>
<td>$\varepsilon_z [\text{keV mm}]$</td>
<td>$</td>
<td>B_{\text{TM}} + B_{\text{TE}}</td>
</tr>
<tr>
<td>$\Delta z [\text{mm}]$</td>
<td>$E_{\text{TM, axis}} [\text{MV/m}]$</td>
<td>50</td>
</tr>
<tr>
<td>$E_{\text{av}} [\text{MeV}]$</td>
<td>$\varphi_{\text{TM}} [\text{grad}]$</td>
<td>74.6</td>
</tr>
<tr>
<td>$\Delta E_{\text{rms}} [\text{keV}]$</td>
<td>$\varphi_{\text{TE}} [\text{grad}]$</td>
<td>0 - 180</td>
</tr>
</tbody>
</table>

Puls length [ps]: 20
Raise time [ps]: 1
Spot size [mm]: 2.6
Bunch charge [nC]: 1
Dual tuning system

- Gun-cell tuner
- TESLA-cell tuner
- Choke-cell setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gun cell</th>
<th>TESLA cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>±0.25mm</td>
<td>±0.3mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>2nm</td>
<td>2nm</td>
</tr>
<tr>
<td>Load</td>
<td>±2250N</td>
<td>±2700N</td>
</tr>
<tr>
<td>Frequency</td>
<td>±137kHz</td>
<td>±286kHz</td>
</tr>
</tbody>
</table>
Liquid N_2 Cathode Cooling

Cone in cooler
- centres cathode
- cathode is pressed in by spring
- thermal contact of cone surface?

Test bench
thermal conductance measurements, cathode temperature? & test of the cathode transfer system
Test bench for the cathode cooler

- heater
- cathode
- cathode cooler
- LN$_2$ reservoir
Cavity with cathode tuning system

- Cathode input
- End of the cryostat
- LN$_2$ reservoir
- Pic up flange
- Titanium bridge
- Cavity tube
Beam tube with higher order mode – and main coupler

HOM coupler
(TESLA design)

Main coupler
Max. power 10kW
Design M.Champion
Development of HEPL, Stanford
RF power input around the cathode

- Power input
- Warm RF window
- Cold RF window
- Tube for cathode exchange
- End of the cryostat
- Quater wave choke
- Bellow for adjustment of Q_{ext} and heat isolation
- Δz
- L
- LN_2 cooling

Radiation Source ELBE
Dietmar Janssen
External quality factor and head load of a cathode-RF coupler

Field parameters for $W = 29.755J$

$E_{z\max}(r=0) = 50\text{MV/m}$, $U_{r\max} = 6.5\text{kV}$

$E_{s\max} = 43.6\text{MV/m}$, $B_{s\max} = 0.11\text{T}$
Cryomodule design of the SRF gun
LN$_2$ cooling shield of the cryostat
Present Status and next steps

Cavity: Fabrication finished
Fabrication of 2 (RRR 40 & 300) cavities at ACCEL finished
next steps: warm tuning in Rossendorf, BCP, HPR, tests at 2K at DESY

Cavity tuners: Fabrication finished
design of a test bench

Cathode cooling system:
Fabrication finished
tests are running

Cathode transfer system:
Design finished, in the workshop

Cathode preparation chamber:
Design and fabrication finished, assembling and tests

Cryomodule: Design finished, in fabrication